When certain prime ideals in rings of continuous functions are minimal or maximal
نویسندگان
چکیده
منابع مشابه
Prime Ideals in Certain Quantum Determinantal Rings
The ideal I 1 generated by the 2 2 quantum minors in the coordinate algebra of quantum matrices, O q (M m;n (k)), is investigated. Analogues of the First and Second Fundamental Theorems of Invariant Theory are proved. In particular, it is shown that I 1 is a completely prime ideal, that is, O q (M m;n (k))=I 1 is an integral domain, and that O q (M m;n (k))=I 1 is the ring of coinvariants of a ...
متن کاملConcerning the frame of minimal prime ideals of pointfree function rings
Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of continuous real-valued functions on $L$. We study the frame $mathfrak{O}(Min(mathcal{R}L))$ of minimal prime ideals of $mathcal{R}L$ in relation to $beta L$. For $Iinbeta L$, denote by $textit{textbf{O}}^I$ the ideal ${alphainmathcal{R}Lmidcozalphain I}$ of $mathcal{R}L$. We show that sending $I$ to the set of minimal prime ...
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملA note on maximal non-prime ideals
The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$, we mean an ideal $I$ of $R$ such that $Ineq R$. We say that a proper ideal $I$ of a ring $R$ is a maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2015
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.05.073